

Long Duration Balloons

- GSFC/Code 531 (under sponsorship of the Code O Advanced Systems Program) managed the development by Stanford Telecom of a non-spacequalified, balloon-class TDRSS user transponder for the Wallops LDBP
- Code 531 also developed a quadrifilar helix flight antenna and a transportable set of RF test equipment (TURFTS) for the LDBP
- Successful flight tests of the TDRSS communications hardware were conducted in September 1993 and August 1994

Balloon Flight/TDRSS User (CCD-Based) Transponder System

rDRSS Workshop

Balloon-Class TDRSS User Transponder Block Diagram

- PN code acquisition times < 2.2 seconds at threshold
- Acquisition possible with data modulation (data rates up to 24kbps)
- Statistical forward link data quality monitor
- Reduced power consumption

Transportable TURFTS for LDBP

TURFTS HARDWARE

RACK A1

CODE 500

Technology Utilization Committee Communications

Technology Description: <u>Fourth Generation TDRSS User Transponder</u>

Description

- Small, light-weight and low-power dual-mode (TDRSS/GN) transponder with high rate command and telemetry capabilities and improved and more standardized interfaces
- Development sponsored by NASA HQ/SOMO and managed by GSFC (contracts with CE and Motorola)

Maturity

- Engineering Models to be completed November 1997, protoflight and flight units delivery in late 1998
- Users include GP-B, EOS-PM and MIDEX-MAP.

Objectives and Benefits

- To promote the use of TDRSS, especially within the small satellite community
- To reduce the weight and power burdens placed on user satellites by previous generations of TDRSS user transponder
- High data rate capabilities reduce transmission time.
- Standardized interfaces reduce integration time
- Fast acquisition time permits Demand Access operation
- Dual sources will reduce the cost of flight units

CE Unit

Motorola Unit

MO&DS **Directorate**

Code 500

01/31/97 TE99/02*NLT2278

CCD-BASED RECEIVER EVOLUTION

Balloon

Activity	Timeframe	Sponsor	Objectives
CCD Integrated Receiver (Phase I)	1985	NASA SBIR Program	Feasibility Study
CCD Integrated Receiver (Phase II)	1986 - 1988	NASA SBIR Program	Laboratory Proof of Concept
TDRSS MA Calibration Receiver	1988 - 1990	NASA/GSFC TDRSS Ground Ops	Operational Ground Receiver
CCD Receiver Demonstration System	1989 - 1993	NASA/HQ Code O & Code 531: Advanced Systems	Testbed for Advanced CCD Receiver Development
TDRSS Balloon-Class User Transponder	1991-1994	NASA/HQ Code O & Code 531: Advanced Systems	Operational Flight Units
TDRSS Lab Prototype Receiver (Build 1) (Beacon Receiver)	1992 - 1994	NASA/HQ Code O & Code 531: Advanced Systems	Proof of Concept; Numerous TDRSS/GN Demos
TDRSS Lab Prototype Receiver (Build 2) (GN Advanced Receiver Prototype)	1994 - 1996	NASA/HQ Code O & Code 531: Advanced Systems	Proof of Concept; Subset of RER Functions (including Shuttle)
GLOBE/Portcom	1994 - 1996	NASA/HQ Code O: Space Network	10 Field-Deployable Demonstration Units; Basis for Potential Miniaturization
Software Programmable Advanced Receiver	1996 -	NASA/HQ Code O & Code 531: Advanced Systems	Subset of RER functions, including carrier- and subcarrier-tone ranging
ISS ECOMM	1996 - 97	NASA/HQ Code Q & Code 500	International Space Station Early Communications Support

MO&DS Directorate

Code 500

OTHER SUCCESSFUL TECHNOLOGY DEVELOPMENTS

TURFTS

Balloon-class TDRSS User Transponder

PORTCOM Transmitter

CCD Receiver Signal Processing Technology

Possible Next Generation TDRSS Customer Terminals

PCMCIA Card for Laptop

Miniaturized Transmitter, Transceiver, or Transponder

Portable (e.g., Attaché Case) Transceiver

CCD/ASIC Based Receiver Block Diagram

TDRS Workshop

CODE 500

Technology Utilization Committee Communications

Demand Access via Innovative Application of <u>MA Forward and Return Services</u>

CODE 500

Technology Utilization Committee Communications

Demand Access Technology Development

- Low-cost Demods Spin-off of CCD-based receiver developments
- Low-Cost MA Beamformer Trade study assessed design concepts/ approaches to increasing the level of circuit integration and reducing the size, complexity and production and life cycle costs

CODE 500

Technology Utilization Committee Communications

Low-Cost MA Return Demand Access <u>Hardware Configuration</u>

